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Abstract
A linear theory is developed for the temporal instability of a viscous liquid
microjet of Newtonian fluid with a spatially periodic variation of surface tension
imposed along its length. The variation of surface tension induces Marangoni
flow within the jet that leads to breakup and drop formation. An analytical
expression is derived for the behaviour of the free surface of the microjet. This
expression is useful for parametric analysis of jet instability and breakup as a
function of jet radius, wavelength and fluid properties.

PACS numbers: 47.10.+g, 47.20.Dr, 47.20.Gv, 68.03.Cd

Introduction

Liquid jets are inherently unstable and can be induced to breakup by various means such
as a perturbation of the free surface, the application of pressure or velocity variations along
the jet, or fluctuations in fluid properties. The analysis of jet instability dates back to Lord
Rayleigh, and an historical overview of the progress in this field has been summarized by
Ashgriz and Mashayek [1, 2]. While some of the effects that cause jet instability have been
studied extensively, others have not [3]. In particular, relatively few authors have studied
jet instability due to spatial variations of surface tension, despite the practical relevance
of this phenomenon. Specifically, advances in microsystems technology have enabled the
development of microfluidic inkjet printing elements with thousands of functional microjets
that can be individually controlled to produce steady steams of picoliter sized droplets at
kilohertz frequency rates by applying a periodic thermal modulation to the surface of each
microjet as it exits an orifice [4–7]. The thermal energy imparted to the jet is carried
downstream by its velocity. Since the surface tension of the jet is temperature dependent,
the advection of thermal energy gives rise to a time-dependent spatially periodic variation
(or gradient) of surface tension along the free surface. This gradient in surface tension
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Figure 1. Jet geometry.

gives rise to a shear stress at the free surface, which is balanced by inertial forces in the
fluid, thereby inducing a Marangoni flow towards regions of higher surface tension. This, in
turn, produces a deformation of the free surface that ultimately leads to instability and drop
formation. A rigorous analysis of this phenomenon requires the solution of a fully coupled
thermal/fluid/free-surface boundary value problem that takes into account flow through the
orifice, thermal diffusion within the orifice manifold and reservoir, thermal diffusion and
advection in the microjet, and complex free-surface dynamics. While this phenomenon holds
substantial potential for unprecedented versatility and speed in inkjet applications and merits
this level of rigor, such analysis is beyond the scope of this paper.

In this paper we study the temporal instability of an infinite viscous microjet that is
subjected to a spatially periodic variation of surface tension along its length. We start with the
linearized axisymmetric Navier–Stokes equations for a Newtonian fluid, and derive analytical
expressions for the time dependence of the jet velocity and free surface. While other authors
have studied this phenomenon, the analytical expression presented here is new [8]. Moreover,
it provides insight into underlying physical effects and is useful for rapid parametric analysis
of jet instability as a function of the jet radius, modulation wavelength and fluid properties. We
demonstrate the theory with some sample calculations, and show that as a microjet approaches
breakup it swells at points of maximum surface tension and necks at points of minimum
surface tension. Lastly, we modify the theory to account for a thermally induced modulation
of surface tension, and use this to estimate the time to drop formation and drop volume for
inkjet applications.

Theory

In this section we solve the equation of motion governing the behaviour of the free surface of
an infinite axisymmetric viscous microjet of Newtonian fluid with a spatially periodic variation
of surface tension imposed along its length (figure 1).

We neglect the effects of gravity, and obtain the following system of equations for a jet of
incompressible fluid with surface tension σ , viscosity µ and density ρ:

Navier–Stokes

ρ
Dν

Dt
= −∇p + µ∇2ν, (1)

where

D

Dt
= ∂

∂t
+ ν · ∇.
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Continuity

∇ · v = 0. (2)

Boundary conditions

The boundary conditions for this problem include stress balance, a kinematic condition and
axisymmetric flow conditions. The first two conditions apply at the free surface (liquid–gas
interface), while the flow conditions apply along the axis of the microjet. The first boundary
condition, stress balance, can be written as [9]

n̂ · T = −2Hσn̂ + ∇sσ, (3)

where T is the stress tensor in the fluid (we assume that the external gas is stress free), σ(z) is
the surface tension,

H = 1

2

(
1

h(1 + h′2)1/2
+

h′′

(1 + h′2)3/2

)
, (4)

and n̂ and t̂ are unit vectors normal and tangential to the free surface (figure 1),

n̂ = r̂
1√

1 + h′2 − ẑ
h′

√
1 + h′2 , (5)

t̂ = r̂
h′

√
1 + h′2 + ẑ

1√
1 + h′2 . (6)

The surface gradient ∇s is

∇s = r̂
h′

(1 + h′2)
∂

∂z
+ θ̂

1

h

∂

∂θ
+ ẑ

1

(1 + h′2)
∂

∂z
. (7)

In these expressions h(z, t) defines the radial position of the free surface, and h′ = ∂h
∂z

.
Equation (3) can be decomposed into normal and tangential components:

(n̂ · T) · n̂ = −2Hσ, (normal stress) (8)

(T · n̂) · t̂ = t̂ · ∇sσ , (tangential stress) (9)

where

t̂ · ∇sσ = 1√
1 + h′2

∂σ

∂z
. (10)

The gradient of surface tension ∇sσ produces a Marangoni flow towards regions of higher
surface tension which deform the free surface of the jet and ultimately causes breakup. The
second (kinematic) boundary condition implies that fluid does not cross the free surface,

D

Dt
(r − h(z, t)) = 0 (r = h). (11)

The flow conditions along the axis of the jet are

vr = 0, (r = 0) (12)

and
∂vz

∂r
= 0 (r = 0). (13)
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Solution method

Our solution method follows a radial expansion approach described by Eggers [10, 11]. First,
we write all equations in component form. For axisymmetric flow, the Navier–Stokes equation
(1) reduces to

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z

)
= −∂p

∂r
+ µ

[
∂

∂r

(
1

r

∂(rvr)

∂r

)
+

∂2vr

∂z2

]
, (14)

and

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z

)
= −∂p

∂z
+ µ

[
1

r

∂

∂r

(
r
∂vz

∂r

)
+

∂2vz

∂z2

]
. (15)

The continuity condition (2) becomes

1

r

∂(rvr)

∂r
+

∂vz

∂z
= 0. (16)

The normal and tangential stress boundary conditions (8) and (9) can be written as

p +
2µ

(1 + h′2)

[
h′

(
∂vz

∂r
+

∂vr

∂z

)
− ∂vr

∂r
− h′2 ∂vz

∂z

]

= −σ

[
1

h(1 + h′2)1/2
− h′′

(1 + h′2)3/2

]
(r = h), (17)

and

µ

(1 + h′2)

[
2h′

(
∂vr

∂r
− ∂vz

∂z

)
+ (1 − h′2)

(
∂vr

∂z
+

∂vz

∂r

)]
= 1√

1 + h′2
∂σ

∂z
(r = h). (18)

Similarly, the kinematic condition (11) gives

∂h

∂t
+ vzh

′ = vr (r = h). (19)

We seek a solution to equations (14)–(19). To this end, we expand vz(r, z, t) and p(r, z, t)in
powers of r

vz(r, z, t) = v0(z, t) + v2(z, t)r
2 + · · · , (20)

p(r, z, t) = p0(z, t) + p2(z, t)r
2 + · · · . (21)

From the continuity condition (2) and the expansion (20) we obtain

vr(r, z, t) = −∂v0(z, t)

∂z

r

2
− ∂v2(z, t)

∂z

r3

4
+ · · · . (22)

Note that these expansions are compatible with the boundary conditions (12) and (13).
Using expansions (20)–(22) we find that the equation of motion (14) for vr is identically
satisfied to lowest order. However, equation (15) for vz gives

∂v0

∂t
+ v0

∂v0

∂z
= − 1

ρ

∂p0

∂z
+

µ

ρ

(
4v2 +

∂2v0

∂z2

)
. (23)

To solve for v0 we need to eliminate the second-order term v2 from (23). To this end, we
evaluate the tangential stress condition (18) at r = h, collect lowest order terms and obtain

v2 = 1

2µh

∂σ

∂z
+

3

2h

∂h

∂z

∂v0

∂z
+

1

4

∂2v0

∂z2
. (24)
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Furthermore, from the normal stress boundary condition (17) we find that

p0 = −µ
∂v0

∂z
+ 2σH. (25)

We substitute (24) and (25) into (23) and obtain

∂v0

∂t
+ v0

∂v0

∂z
= − 1

ρ

∂

∂z
(2σH) +

2

ρh

∂σ

∂z
+

3µ

ρh2

∂

∂z

(
h2 ∂v0

∂z

)
. (26)

Finally, the kinematic condition (19) gives

∂h

∂t
= −v0

∂h

∂z
− h

2

∂v0

∂z
. (27)

Equations (26) and (27) can be reduced further using the following expansions,

v0(z, t) = v0 + u(z, t), (28)

h(z, t) = r0[1 + δ(z, t)], (29)

and

σ(z) = σ0 + σ1(z), (30)

where r0, v0 and σ0 are the unperturbed radius, velocity and surface tension of the jet,
respectively, and u(z, t) , δ(z, t) and σ1(z) are perturbations to these values. To simplify the
analysis we transform to a coordinate system at rest with respect to the jet,

η = z − v0t. (31)

We use (28), (29), (30) and (31) in (26) and (27), and then linearize the resulting equations by
ignoring products of derivatives, etc. The linearized equations (26) and (27) reduce to

∂u

∂t
− σ0

ρr0

[
∂δ

∂η
+ r2

0
∂3δ

∂η3

]
− 3µ

ρ

∂2u

∂η2
= 1

ρr0

∂σ1

∂η
, (32)

and
∂2u

∂η2
= −2

∂2δ

∂η∂t
. (33)

We combine (32) and (33) into a single equation by applying ∂
∂η

to (32) and then substituting
(33) into the resulting equation. This gives

∂2δ

∂t2
+

σ0

2ρr0

[
∂2δ

∂η2
+ r2

0
∂4δ

∂η4

]
− 3µ

ρ

∂3δ

∂η2∂t
= − 1

2ρr0

∂2σ1

∂η2
. (34)

This is the equation of motion for δ(η, t) which defines the free surface. For a well-posed
problem we need to specify initial conditions for δ(η, t), and a functional dependence for
σ1(η). We choose the following,

δ(η, 0) = 0, (35)

∂

∂t
δ(η, 0) = 0, (36)

and

σ1(η) = −�σ

2

(
1 + cos

(
2π

λ
η

))
. (37)

Equations (34), (35) and (36) define an initial-value problem for δ(η, t). It is important
to note that conditions (35) and (36) imply that there is no initial perturbation to the free
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surface. The jet instability studied here is initiated by a variation in surface tension that
induces Marangoni flow within the jet towards regions of higher surface tension, which, in
turn, causes a deformation of the free surface that leads to breakup.

The solution to (34) can be decomposed into a homogeneous and particular part. The
homogeneous solution satisfies

∂2δ

∂t2
+

σ0

2ρr0

[
∂2δ

∂η2
+ r2

0
∂4δ

∂η4

]
− 3µ

ρ

∂3δ

∂η2∂t
= 0. (38)

Based on the form of σ1(η) we seek a solution of the form

δh(η, t) = eαt cos

(
2π

λ
η

)
. (39)

We substitute (39) into (38) and find that

α2 +
3µ

ρ

(
2π

λ

)2

α − β2 = 0, (40)

where

β2 = σ0

2ρr0

(
2π

λ

)2
{

1 − r2
0

(
2π

λ

)2
}

. (41)

There are two solutions to (40),

α± =
− 3µ

ρ

(
2π
λ

)2 ±
√[ 3µ

ρ

(
2π
λ

)2]2
+ 4β2

2
. (42)

Thus, the homogeneous solution is of the form

δh(η, t) = [A eα+t + B eα−t ] cos

(
2π

λ
η

)
, (43)

where A and B are arbitrary constants. It is easy to show that the particular solution is of the
form

δp(η) = σ

4ρr0β2

(
2π

λ

)2

cos

(
2π

λ
η

)
. (44)

Thus, the general solution is

δ(η, t) = [A eα+t + B eα−t ] cos

(
2π

λ
η

)
+

�σ

4ρr0β2

(
2π

λ

)2

cos

(
2π

λ
η

)
. (45)

The constants A and B are determined from the initial conditions (35) and (36). After some
algebra we find that

δ(η, t) = �σ

2σ0

1[
1 − r2

0

(
2π
λ

)2]
[

1 +
α−

α+ − α−
eα+t − α+

α+ − α−
eα−t

]
cos

(
2πη

λ

)
. (46)

This expression describes the behaviour of the free surface h(η, t) = r0[1 + δ(η, t)].
For a given time t > 0 the function δ(z, t) obtains a maximum when η ≡ ηmax =
± λ

2 ,± 3λ
2 ,± 5λ

2 , . . . , and a minimum when η ≡ ηmin = 0,±λ,±2λ,±3λ, . . . . Jet breakup
(pinch-off) occurs when δ(ηmax, t) = 1 or δ(ηmin, t) = −1 (i.e., when h(η, t) = 2r0 or 0,
respectively). Thus, for example, the time to breakup Tb can be computed by solving for the
value of t = Tb that gives δ(η = 0, t) = −1. Equation (46) is a key result. It enables rapid
parametric analysis of jet instability and breakup as a function of r0, λ, and fluid properties.
We demonstrate its use in the next section.
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Figure 2. Time to breakup versus wavenumber.

It is also instructive to solve for the velocity u(η, t). We substitute (46) into (33) and
obtain

u(η, t) = −�σ

σ0

λ

2π

α+α−
(α+ − α−)

1[
1 − r2

0

(
2π
λ

)2] [eα+t − eα−t ] sin

(
2πη

λ

)
. (47)

This expression gives the variation in jet velocity u(η, t) as measured by an observer moving
with velocity v0.

Results

The analytical solution (46) enables rapid parametric analysis of jet breakup. We demonstrate
it via application to a microjet of water with µ = 0.001 N s m−2, ρ = 1000 kg m−3, r0 = 5 µm,
v0 = 10 m s−1, σ0 = 0.073 N m−1. We compute the time to breakup Tb by setting η = 0
in (46) and solving for the value t = Tb that gives δ(η = 0, t) = −1. First, we compute Tb

as a function of the reduced wavenumber k = 2πr0/λ for 0 � k � 1, i.e., for a range of
wavelengths λ � 2πr0 (figure 2).

From this analysis we find that the jet is most sensitive to breakup at a wavenumber k =
0.731 (λ = 8.6 r0). This is also evident from a plot of the dimensionless growth rate parameter

α+

√
ρ r3

0

/
σ0 (figure 3).

Next, we fix λ = 8.6 r0 and compute Tb as a function of the percent variation in surface
tension with 0.001 < �σ/σ0 < 0.5. Note that Tb increases nonlinearly with decreasing σ

(figure 4).
It is also instructive to plot Tb as a function of normalized viscosity µ/µ0 and density

ρ/ρ0 where µ0 = 0.001 N s m−2 and ρ0 = 1000 kg m−3 (figures 5 and 6). These plots
show that Tb increases with viscosity and density as expected due to the associated increase in
viscous damping and inertia, respectively. A similar trend is observed in a plot of Tb versus
jet radius, which also reflects an increase in inertia with r0 (figure 7).

Next, we plot the normalized jet profile, r/r0 = (1 + δ(η, t)), as a function of x = η/λ

for −1 < x < 1 (−λ < η < λ), with t = 0, 0.75Tb, and Tb (figure 8). Note that the jet necks
at points η = 0,±λ,±2λ,±3λ, . . . , where σ is a minimum (σ = σ0 − �σ ), and swells at
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Figure 4. Time to breakup versus per cent variation in surface tension.

points η = ± λ
2 ,± 3λ

2 ,± 5λ
2 , . . . , where σ is a maximum (σ = σ0). Lastly, we track r/r0 as a

function time at the pinch-off point η = 0. The radial decay is initially gradual, but increases
rapidly as t approaches Tb (figure 9).

Applications

In this section we modify the free-surface equation (46) for inkjet applications. There are
two issues to address before we begin the analysis. First, this equation predicts the instability
of an infinite jet in which the deformation of the free surface grows in a periodic fashion
along the entire length of the jet, whereas in inkjet applications the jet emanates from a nozzle
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and the deformation of the free surface grows with increasing distance from the nozzle. The
former is known as temporal instability, while the latter is known as spatial instability. Second,
equation (46) is based on linear theory, but the jet breakup process is nonlinear. Regarding the
first issue, it has been proven that spatial and temporal instability analysis predict the same
time to breakup Tb as long as the jet velocity v0 is much greater than the capillary velocity
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vc = √
σ/(ρ r0) [12]. For inkjet applications v0 is typically between 10 and 20 m s−1 while

vc ≈ 2 m s−1, and this condition is reasonably well satisfied. Regarding the second issue,
linear analysis applies as long as the deformation of the free surface δ(η, t) is small relative
to the unperturbed radius r0. Now, in inkjet applications the applied perturbation is small
�σ � σ0, and the jet remains substantially cylindrical up until breakup, at which point there
is a dramatic short-lived pinch-off process. While linear analysis does not apply to the final
stage of pinch-off, the duration of this process is small compared to the total breakup time,
and therefore linear theory gives a very reasonable estimate of Tb, which has been verified
experimentally [13].

We are now ready to modify equation (46) for inkjet applications. As noted above,
microfluidic inkjet printing elements can produce streams of picoliter-sized droplets via
thermal modulation of surface tension. These silicon-based inkjet elements consist of a
reservoir connected to a planar orifice manifold with thousands of individual orifices, typically
greater than 10 µm in diameter. The reservoir is pressured to produce an array of microjets
with velocities in the range of 10–20 m s−1. Each orifice has a heating element associated
with it (either embedded within the manifold or deposited on its surface, near the orifice),
and each heating element can be individually actuated to heat the surface of the microjet as it
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exits the orifice. The thermal energy, which is applied in a timewise fashion at the orifice, is
carried downstream by the fluid velocity, and dissipates from the surface by convection into
the surrounding air (convection coefficient hconv), and diffusion into the microjet (diffusivity
α). Both of these processes are slow compared to the downstream advection. For example,
the thermal energy deposited on the surface of a microjet of water (α = 1.47 × 10−7 m2 s−1)
with a diameter 2r0 = 10 µm and jet velocity v0 = 10 m s−1 will travel a distance z =
100 µm downstream in 10 µs, but will only diffuse a distance of approximately ld(t) ≈ √

α t =
1.2 µm into the jet during this time. Thus, the microjet develops a time-dependent temperature
profile T (r, z, t) along its length that gradually decreases in magnitude, and is predominantly
confined to an annulus rh(t) � r � r0 where rh(t) ≈ r0 − ld(t).

The variation of surface temperature T (r0, z, t) induces a time-dependent variation of
surface tension along the microjet, which, in turn, induces thermal Marangoni convection
within the microjet. To first order,

σ(T ) = σ0 − Cσ (T − T0), (48)

where σ(T ) is the surface tension at temperature T, σ0 is the surface tension at the ambient
temperature T0 and Cσ is a constant. Therefore, in a periodically heated inkjet, the surface
tension σ(T (r0, z, t)) depends on both position and time. This induces instability within the
microjet resulting in a deformation of the free surface that grows with increasing distance from
the orifice. However, equation (46) cannot be directly applied to inkjet applications because
it is based on the assumption that the magnitude of the applied perturbation �σ is constant
in time, whereas in inkjet applications �σ is time-dependent due to thermal diffusion. In the
following, we adapt our theory to account for this time dependence.

To understand the time dependence of surface tension in ink jet applications, we need to
consider the way in which heat is imparted to a microjet to cause drop formation. In practice,
the heater is activated for a time τon and then deactivated for a time τoff in a cyclic fashion.
This produces a time-dependent spatially periodic temperature profile along the jet with a
wavelength of approximately λ = v0 τh where τh = τon + τoff . At any instant of time, the
induced temperature profile along the microjet can be considered to be of the form

T (r, z) = T0 − T�(z)f (r) (49)

where T0 is the ambient temperature, and

T�(z) = �T

2

(
1 + cos

(
2π

λ
z

))
, (50)

with

f (r) =
{

0 (r < rh)

1 (r � rh).
(51)

We evaluate (49) at r = r0 and substitute the result into (48) which gives

σ(z) = σ0 − Cσ�T

2

(
1 + cos

(
2π

λ
z

))
,

= σ0 − �σ

2

(
1 + cos

(
2π

λ
z

))
,

(52)

where �σ = Cσ�T . Note that (52) is the same as (30) with σ1(z) given by (37). Thus, the
thermally induced modulation of surface tension in inkjet applications is related to our linear
theory. It remains to account for the time decay of T�(r, z, t).

Consider the diffusion of thermal energy in an infinite insulated column of stationary fluid
of radius r0 with an initial temperature given by (49). The temperature distribution T�(r, z, t)



274 E P Furlani

within the fluid satisfies the following boundary value problem,

∂2T�

∂r2
+

1

r

∂T�

∂r
+

∂2T�

∂z2
= 1

α

∂T�

∂t
0 � r � r0, −∞ < z < ∞, t > 0, (53)

T�(r, z, 0) =
{

0 (0 < r < rh)
�T

2

(
1 + cos

(
2π

λ
z

))
(rh � r � r0)

(54)

∂T�

∂r
= 0 (r = r0). (55)

The solution to (53)–(55) is

T�(r, z, t) = �T

2

[
r2

0 − r2
h

r2
0

+
2

r2
0

∞∑
m=1

cm e−α γ 2
mtJ0(γmr)

] (
1 + e−α(2π/λ)2t cos

(
2π

λ
z

))
,

(56)

where Jn(γmr) is the Bessel function of order n, γm are the positive roots of J1(γmr0) = 0 and
cm = 1

J 2
0 (γmr0)

∫ r0

rh
r ′J0(γmr ′) dr ′. We are interested in the surface temperature T�(r0, z, t). It

is easy to verify that γ 2
m � (2π/λ)2 for all m (λ � 2πr0). Thus, we neglect terms containing

e−α(2π/λ)2t , and obtain an estimate for the time decay of the temperature variation at the surface,

�Ts(t) ≈ �T

2

[
r2

0 − r2
h

r2
0

+
2

r2
0

∞∑
m=1

cm e−α γ 2
mtJ0(γmr0)

]
. (57)

We use this in equation (52) to estimate the decay rate of �σ ,

�σ(t) = �σ

[
r2

0 − r2
h

r2
0

+
2

r2
0

∞∑
m=1

cm e−α γ 2
mtJ0(γmr0)

]
. (58)

Finally, we substitute (58) into (46) and obtain an expression for the deformation of the
free surface that accounts for thermal diffusion,

δh(η, t) = �σ

2σ0

[ r2
0 −r2

h

r2
0

+ 2
r2

0

∑∞
m=1 cm e−α γ 2

mtJ0(γmr0)
]

[
1 − r2

0

(
2π
λ

)2]
×

[
1 +

α−
α+ − α−

eα+t − α+

α+ − α−
eα−t

]
cos

(
2πη

λ

)
. (59)

In this expression rh ≈ r0 − √
ατon where λ = v0τh, v0 is the jet velocity, τon is the duration

of the heat pulse, and τh is the period of the heating cycle. We use (59) to estimate the time
to drop formation for inkjet applications. As an example, consider a microjet of water with
µ = 0.001 N s m−2, ρ = 1000 kg m−3, r0 = 5 µm, v0 = 10 m s−1, σ0 = 0.073 N m−1, and
�σ/σ0 = 0.01. We compute Tb as a function of wavenumber k = 2πr0/λ with and without
the thermal diffusion (figure 10). Note that the minima of these plots occur at the same
wavelength λmin ≈ 8.6 r0. However, the breakup with thermal diffusion is slower because
of the decay of �σ . To achieve λmin we set τh = λmin/v0 = 4.3 µs with τon ≈ τh/2. This
gives a drop production frequency f = 1/τh = 232 kHz, and a drop volume Vdrop ≈ πr2

0 λ ×
10−3 = 3.3 picoliters. It is useful to determine the scaling of key inkjet variables as a function
of orifice radiusr0. It is easy to verify that τh ∝ r0, f ∝ 1/r0,Vdrop ∝ r3

0 . Also Tb decreases
with r0 but in a more complex fashion. These relations show that higher operating frequencies,
shorter breakup lengths and smaller drop sizes can be obtained with smaller orifices.

Finally, equation (59) enables rapid parametric analysis of drop production as a function
of operating frequency, jet radius, temperature modulation and fluid properties. It should be
of considerable use in the development of novel microfluidic inkjet systems.
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Figure 10. Time to breakup versus k with/without thermal diffusion.

Conclusions

We have studied the behaviour of a slender microjet of Newtonian fluid with a spatially periodic
variation of surface tension imposed along its length. We have derived an analytical expression
for the time dependence of the free surface, and used this to perform rapid parametric analysis
of jet instability and pinch-off. We have shown that as the jet approaches breakup it swells at
points of maximum surface tension, and necks at points of minimum surface tension. We have
also adapted the theory for use in inkjet applications. In such applications the jet instability
is initiated by Marangoni flow that is induced by a thermal modulation of surface tension.
We consider the diffusion of thermal energy within the jet and obtain an expression for the
time dependence of its surface temperature. This gives an estimate of the time dependence of
the surface tension, which leads to an equation for the behavior of the thermally modulated
free-surface. We use this to estimate the time to drop formation and drop volume for novel
inkjet applications.
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